SAFEGUARDING OUR TREE COLLECTIONS: Gardens coordinate to manage diversity.

M. Patrick Griffith, Rudy Aguilar, Lindy Knowles, Teodoro Clase, Falon Cartwright, Ethan Freid, Alan Meerow, Vanessa Sanchez, Sean Hoban, Murphy Westwood, Kay Havens, Andrea Kramer, Jeremy Fant, Michael Dosmann, David Lorence, Seana Walsh, John Clark, Abby Meyer, Bob Lacy, Taylor Callicrate, Tracy Magellan, Michael Calonje.

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

iv. A path forward.

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

iv. A path forward.

1932: Collection established

Major Collections Development 1990-present

Indonesia, 1998

Dominican Republic, 2012

Guiana, 1996

Florida, 2011

Brazil, 1994

Trinidad and Tobago, 2007

Papua New Guinea, 1996

Paraguay, 1997

Colombia, 2010

Panama, 2007

Where we have worked

000

Montgomery Botanical Center Plant Collections Development

0

0

Red = plants at Montgomery collected prior to 1990

0

Teal = plants at Montgomery collected 1990-2015

"

Mission:

..advance research, conservation and education through living plant collections."

61.116

"

Mission:

... advance research, conservation and education through living plant collections."

62. 1 61

Mission:

... advance research, conservation and education

through living plant collections."

a della set a set

"

[= ex situ conservation]

Basic idea:

keep genetically diverse collections

Basic idea:

keep genetically diverse collections

Question: which plants and how many?

MBC, Early 1990s:

Strategy based on theoretical models

MBC, Early 1990s: Strategy based on theoretical models

Basic idea:

Broad and deep sampling of wild plant populations,

Pseudophoenix vinifera

MBC, Early 1990s: Strategy based on theoretical models

Broad and deep sampling of wild plant populations,

Adequate numbers kept in botanic garden.

Pseudophoenix vinifera

MBC Collections Policy

Originally informed by Isozyme studies (1991)

ation in populations of Z. pumila may be an island effect. However, this would not explain similarly low values for the Australian Macrozamia communic (Tabi Ornduff and Class

zyme divergence of populations (Helenurm and Ganders 102 Crawford, 1985.

PATTERNS OF ALLOZYME DIVERSITY IN THE Journal of Botany 78(3): 436-445. 1991. VALLEKINS OF ALLOLYME DIVERSILY IN THE WEST INDIES CYCAD ZAMIA PUMILA (ZAMIACEAE) TERRENCE W. WALTERS^{2,3} AND DEENA S. DECKER-WALTERS² JEKKENCE W. WALLERST AND DEENA J. DEURER VALLERS
Fairchild Tropical Garden, 11935 Old Cutler Road, Miami, Florida 33156; and
Department of Biological Sciences, Florida International University, Miami, Florida 33199 The West Indies cycad, Zamia pumila, is restricted to the Greater Antilles, northern Bahama idende Floride and the contineatern coast of Georgia. An electronhorenic ends based on nine The West Indies cycad, Zania pumila, is restricted to the Greater Antilles, northern Bahama Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine sectores enterprised 21 accessions from the number of the encoder. I ower levels of

Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine enzymes compared 21 accessions from throughout the range of the species. Lower levels of intranomulation variation than those reported for ferns, other evonosnerms, and anguissnerms enzymes compared 21 accessions from throughout the range of the species. Lower levels of intrapopulation variation than those reported for ferns, other gymnosperms, and angiosperms were discovered for the two more extensively sampled nonulations. However, this variation intrapopulation variation than those reported for ferns, other gymnosperns, and angiosperms were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island is a not in the endemic Australian curved. More sensitive were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island taxa and in the endemic Australian oread, Macrozania communic. In contrast alloyume divergence among accessions of 7 auguil appeared relatival. vas similar to that found in other island taxa and in the endemic Australian cycad, Macrozamia communis. In contrast, allozyme divergence among accessions of Z. pumila appeared relatively high, mestly as a result of rare alleles restricted in generathic distribution. The age and high communis. In contrast, allozyme divergence among accessions of Z. punila appeared relatively high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio energy of Z. punila may have contributed to population differentiation. Also mean number high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio-geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally the time-sinee-divergence value (1) α geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million wave ago) between Z. numila and its closest extant relative. Z. enlendence was much of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million years ago) between Z. pumila and its closest extant relative, Z. splenders, was much amaller than the age of Z. numila suggested by the freed record and historical geology of the million years ago) between Z. pumila and its closest extant relative, Z. splendens, was much smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (20-60 million years and). Together, these data indicate that hinchemical evolution smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all events, is show when compared to that of nonevent seed

Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all cycads, is slow when compared to that of noncycad seed blants. plants.

Zamia pumila L. sensu lato is the sole mem-Lanua pumua L. sensu iato is me sole mem-ber of the genus in the West Indies. This species ver of the genus in the west lines, i has species is restricted to the southeastern coast of Georis required to the southeastern coast of Georgia, Florida, the northern Bahama Islands gia, riorida, ine norinern panama isianus (Abaco, Andros, Eleuthera, Grand Bahama, (Abaco, Andros, Eleuinera, Orano banania, Long Island, New Providence), and the Greater Long Island, New Frovidence), and the Oreater Antilles (Cayman Islands, Cuba, Hispaniola Antilles, Comminican Republic], Jamaica, and Islands, Dominican Republic, Jamaica, and

iously applied to the West Indies zamia. Leon rousiy apprice to the west filters zamia. Leon (1946) in his Flora de Cuba described ten Za-May be the second de second described den Za-mia species, five of which he considered en*mu* species, nve or which he consucred en-demic to Cuba. In his extensive numerical study demic to Cuba, in his extensive numericar subj of variation in leaf morphology, Eckenwalder of variation in teat morphotogy, eckelwanter (1980a) placed all populations into a single species containing two subspecies, Z. pumile species containing two subspecies, *L. pumila* sp. *pumila* and ssp. *pygmaea* (Sims) Ecken-walder: Similarly, leaf morphology, chemical and the and endowing a non-the two second wanter, ommany, icar morphology, chemicar analysis, and ecology led Landry (1980) to conclude that zamias in Florida consist of highly ice had been recognized

Originally informed by Isozyme studies (1991)

Guideline: grow 15 plants per population, from at least 3 mothers.

PATTERNS OF ALLOZYME DIVERSITY IN THE Journal of Botany 78(3): 436-445. 1991. PATTERNS OF ALLOZYME DIVERSITY IN THE WEST INDIES CYCAD ZAMIA PUMILA (ZAMIACEAE) TERRENCE W. WALTERS^{2,3} AND DEENA S. DECKER-WALTERS² Fairchild Tropical Garden, 11935 Old Cutler Road, Miami, Florida 33156; and Department of Biological Sciences, Florida International University, Miami, Florida 33199 The West Indies cycad, Zamia pumila, is restricted to the Greater Antilles, northern Bahama slands Florida and the contineatorn creat of Gerwsia. An electronhomotic ends, based on nine

The West Indies cycad, Zania pumila, is restricted to the Greater Antilles, northern Bahama Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine enverse compared 21 accessions from throughout the range of the species. Lower levels of Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine enzymes compared 21 accessions from throughout the range of the species. Lower levels of intranomulation variation than those reported for ferns, other evonosnerms, and anguissnerms enzymes compared 21 accessions from throughout the range of the species. Lower levels of intrapopulation variation than those reported for ferns, other symmosperms, and angiosperms were discovered for the two more extensively sampled nonvalations. However, this variation Intrapopulation variation than those reported for ferns, other gymnosperns, and angiosperms were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island taxa and in the endemic Australian evend. Macrozamia were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island taxa and in the endemic Australian cycad, Macrozania communic. In contrast alloyume divergence among accessions of 7 auguile processed relatively vas similar to that found in other island taxa and in the endemic Australian cycad, Macrozamia communis. In contrast, allozyme divergence among accessions of Z. pumila appeared relatively high, mestly as a result of rare alleles restricted in generathic distribution. The age and high communis. In contrast, allozyme divergence among accessions of Z. pumita appeared relatively high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio geography of Z. numito may eave contributed to population differentiation. Also, mean number high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles ner leave was low for the seecies (1.75). Finally the time-since-divergence value (10.8 geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million wave ago) between Z. numila and its closest extant relative. Z. enlendence was much of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million years ago) between Z. pumila and its closest extant relative, Z. splenders, was much amaller than the age of Z. numila suggested by the freed record and historical geology of the million years ago) between Z. pumila and its closest extant relative, Z. splendens, was much smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30-60 million wave age). Together these data indicate that hischemical evolution smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all events is show when compared to that of permutate end Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all cycads, is slow when compared to that of noncycad seed

plants.

Zamia pumila L. sensu lato is the sole mem-Lanua pumua L. sensu iato is me sole mem-ber of the genus in the West Indies. This species ber of the genus in the west indies, i his species is restricted to the southeastern coast of Georis resultion to the southeastern coast of Geor-gia, Florida, the northern Bahama Islands gia, riorida, ine norinern panama isianus (Abaco, Andros, Eleuthera, Grand Bahama, (Abaco, Andros, Eleuinera, Orano banania, Long Island, New Providence), and the Greater Long Island, New Frovidence), and the Oreater Antilles (Cayman Islands, Cuba, Hispaniola Antilles, Comminican Republic], Jamaica, and Islands, Dominican Republic, Jamaica, and

demic to Cuba. In his extensive numerical study demic to Cuoa. In his extensive numericar subay of variation in leaf morphology, Eckenwalder of variation in lear morphorogy, eccentration (1980a) placed all populations into a single species containing two subspecies, Z. pumile species containing two subspecies, *L. pumila* sp. *pumila* and ssp. *pygmaea* (Sims) Ecken-walder: Similarly, leaf morphology, chemical and the and endowing a non-the two second wanter, ominariy, icar morphology, chemicar analysis, and ecology led Landry (1980) to con-duct that remains in Florida consist of biological clude that zamias in Florida consist of highly ice had been recognized

jously applied to the West Indies zamia. Leon rousiy applied to the west fildes zamia. Leon (1946) in his Flora de Cuba described ten Zamin species, five of which he considered en-

In Practice?

Originally informed by Isozyme studies (1991)

island effect. However, this would not explain similarly low values for the Australian Macrozamia communic (Tabi Ornduff and Class

zyme divergence of populations (Helenurm and Ganders 100 Crawford, 1985

PATTERNS OF ALLOZYME DIVERSITY IN THE Journal of Botany 78(3): 436-445. 1991. VALLEKINS OF ALLOLYME DIVERSILY IN THE WEST INDIES CYCAD ZAMIA PUMILA (ZAMIACEAE) TERRENCE W. WALTERS^{2,3} AND DEENA S. DECKER-WALTERS² JEKKENCE W. WALLERST AND DEENA J. DEURER VALLERS
Fairchild Tropical Garden, 11935 Old Cutler Road, Miami, Florida 33156; and
Department of Biological Sciences, Florida International University, Miami, Florida 33199 The West Indies cycad, Zamia pumila, is restricted to the Greater Antilles, northern Bahama slands Florida and the contineatorn creat of Gerwsia. An electronhomotic ends, based on nine

The West Indies cycad, Zania punila, is restricted to the Greater Antilles, northern Bahama Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine envenues conneared 21 accessions from throughout the range of the species. Lower levels of Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine enzymes compared 21 accessions from throughout the range of the species. Lower levels of intranomulation variation than those reported for ferns, other evonosnerms, and anguissmerm enzymes compared 21 accessions from throughout the range of the species. Lower levels of intrapopulation variation than those reported for ferns, other symmosperms, and angiosperms were discovered for the two more extensively sampled nonvalations. However, this variation intrapopulation variation than those reported for ferns, other gymnosperns, and angiosperms were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island is a not in the endemic Australian curved. More sensitive were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island taxa and in the endemic Australian cycad, Macrozania communic. In contrast alloyume divergence among accessions of 7 auguile processed relatively vas similar to that found in other island taxa and in the endemic Australian cycad, Macrozamia communis. In contrast, allozyme divergence among accessions of Z. pumila appeared relatively high, mestly as a result of rare alleles restricted in generathic distribution. The age and high communis. In contrast, allozyme divergence among accessions of Z. punila appeared relatively high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio energenery of Z. punila may have contributed to population differentiation. Also mean number high, mostly as a result of rare alleles restricted in geographic distribution. The age and bio geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally the time-eityen-divergence value (10.25)

geography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million ware see) between Z. mumila and its closest extant relative. Z. enlendence was enough of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million years ago) between Z. pumila and its closest extant relative, Z. splenders, was much smaller than the age of Z. numila suggested by the freed record and historical geology of the million years ago) between Z. pumila and its closest extant relative, Z. splendens, was much smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30-60 million wave age). Together these data indicate that hischemical evolution smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhans in all events is show when compared to that of processing event Caribbean (30-60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all cycads, is slow when compared to that of noncycad seed

plants.

Zamia pumila L. sensu lato is the sole mem-Lanua pumua L. sensu iato is me sole mem-ber of the genus in the West Indies. This species ber of the genus in the west indies, i his species is restricted to the southeastern coast of Georis required to the southeastern coast of Georgia, Florida, the northern Bahama Islands gia, riorida, ine norinern panama isianus (Abaco, Andros, Eleuthera, Grand Bahama, (Abaco, Andros, Eleuinera, Orano banama, Long Island, New Providence), and the Greater Long Island, New Frovidence), and the Oreater Antilles (Cayman Islands, Cuba, Hispaniola Antilles, Comminican Republic], Jamaica, and Islands, Dominican Republic, Jamaica, and

jously applied to the West Indies zamia. Leon rousiy applied to the west fildes zamia. Leon (1946) in his Flora de Cuba described ten Za-May be the second de second described den Za-mia species, five of which he considered enma species, nye or which he consucred en-demic to Cuba. In his extensive numerical study demic to Cuoa. In his extensive numericar subj of variation in leaf morphology, Eckenwalder of variation in lear morphorogy, eccentration (1980a) placed all populations into a single species containing two subspecies, Z. pumile species containing two subspecies, *L. pumila* sp. *pumila* and ssp. *pygmaea* (Sims) Ecken-walder: Similarly, leaf morphology, chemical and the and endowing a non-the two second wanter, ominariy, icar morphology, chemicar analysis, and ecology led Landry (1980) to con-duct that remains in Florida consist of biological clude that zamias in Florida consist of highly ies had been recognized In Practice: Corypha taliera

13 plants at MBC, from one mother, from 1996 IUCN EW, ca. 20 plants known. In Practice: *Cycas micronesica*, 2007 249 plants at MBC IUCN EN In Practice: *Cycas micronesica,* 2007 249 plants at MBC IUCN EN

* Numbers represent number of mother plants sampled for seeds.

In Practice: *Cycas micronesica,* 2007 249 plants at MBC IUCN EN

> Refined guidelines would help.

* Numbers represent number of mother plants sampled for seeds.

Compared garden collection to wild population

First study with palms – Leucothrinax morrisii

3 accessions, 15 plants

= good genetic diversity

diminishing returns

First study with palms – Leucothrinax morrisii

First study with palms – Leucothrinax morrisii

First study with palms – Leucothrinax morrisii

more info

First study with palms – *Leucothrinax morrisii*

Projects:

Mission-Based Collections Planning Mission-Based Collections Stewardship

Projects:

Mission-Based Collections Planning Mission-Based Collections Stewardship

Objective:

model for ex situ cycad genetics

Basic comparison

Same collections protocol + Different species

Zamia decumbens

Zamia lucayana

Griffith et al., 2015, 2017

Basic comparison

Same collections protocol + Different species = different rates of genetic capture

Zamia decumbens

Zamia lucayana

Griffith et al., 2015, 2017

Basic comparison

Same collections protocol + Different species = different rates of genetic capture

Zamia decumbens

Zamia lucayana

Griffith et al., 2015, 2017
Basic comparison

Same collections protocol + Different species = different rates of genetic capture

Zamia decumbens

Zamia lucayana

Griffith et al., 2015, 2017

fit your method to the plant

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

i. improving garden conservation.

Refining protocols

ii. What do we need?

iii. Where are we now?

i. improving garden conservation.

ii. What do we need?

iii. Where are we now?

Plants are diverse

Block Botanical Gardens

Plants are *diverse*

Not only palms and cycads

Morton Arboretum

Some species are extinct in the wild

(aconte

Arnold Arboretum

(INTER)NATIONAL NEED

Strengthening the conservation value of ex situ

Abstract With 10% of trees (> 8,000 species) threatened with extinction there is an urgent need for botanical gardens to protect threatened trees in dedicated conservation collections. Species conservation is mentioned in the mission statements of most major botanical gardens, yet the actual conservation value of existing ex situ tree collections is low. We conducted interviews with members of the botanical garden community and organized a symposium at the 5th Global Botanic Gardens Congress to identify challenges and collect recommendations to improve living ex situ tree collections. We summarize and evaluate this information to facilitate gardens becoming more effective agents for global tree conservation. Experts agree that gardens offer valuable strengths and assets for tree conservation. Some challenges exist, however, including a lack of strategic conservation focus, collection management limitations, gaps in fundamental biological information for trees, and a lack of global coordination. Solutions are offered to facilitate gardens and arboreta of all sizes to participate more effectively in tree conservation. Prioritizing genetically diverse tree collections, participating in conservation networks, developing tree-specific conservation models and guidelines, and strengthening tree science research efforts are a few examples. Most importantly, a more coordinated global effort is needed to fill knowledge gaps, share information, and build conservation capacity in biodiversity hotspots to prevent the loss of tree species.

Keywords Arboretum, botanical garden

NICOLE CAVENDER, MURPHY WESTWOOD, CATHERINE BECHTOLDT GERARD DONNELLY, SARA OLDFIELD, MARTIN GARDNER DAVID RAE and WILLIAM MCNAMARA

Introduction

lobally, 10% of all trees (> 8,000 species) are threa-Gtened with extinction (Oldfield et al., 1998). Although protecting a threatened species in its natural habitat (in situ conservation) is the ideal and most effective way to prevent extinction, there is a growing realization that complementary protection efforts outside a species' natural habitat (ex situ conservation) are also crucial for species' survival (Kramer et al., 2011; Oldfield & Newton, 2012; Pritchard et al., 2012). The success of in situ conservation is dependent on a variety of factors, including accurate assessment of threats, local community and government engagement, and the susceptibility of native habitat to climate change (Robinson, 2005; Oldfield & Newton, 2012; Pritchard et al., 2012). Ex situ conservation approaches can complement in situ conservation by strategically avoiding these confounding factors. In some cases a small population size or an imminent threat could render in situ conservation of a tree species unviable, making ex situ conservation the only option to prevent its immediate extinction (McNamara, 2011; Ma et al., 2013). Storage in a seed bank is the most economic and practical way to protect tree species, but many trees, such as oaks, cannot be stored using existing technologies. These 'exceptional' species must be housed in living collections (Pence, 2012) Furth

Cavender et al. 2015

(INTER)NATIONAL NEED

"... prioritizing genetically diverse tree collections"

Strengthening the conservation value of ex situ

Abstract With 10% of trees (> 8,000 species) threatened with extinction there is an urgent need for botanical gardens to protect threatened trees in dedicated conservation collections. Species conservation is mentioned in the mission statements of most major botanical gardens, yet the actual conservation value of existing ex situ tree collections is low. We conducted interviews with members of the botanical garden community and organized a symposium at the 5th Global Botanic Gardens Congress to identify challenges and collect recommendations to improve living ex situ tree collections. We summarize and evaluate this information to facilitate gardens becoming more effective agents for global tree conservation. Experts agree that gardens offer valuable strengths and assets for tree conservation. Some challenges exist, however, including a lack of strategic conservation focus, collection management limitations, gaps in fundamental biological information for trees, and a lack of global coordination. Solutions are offered to facilitate gardens and arboreta of all sizes to participate more effectively in tree conservation. Prioritizing genetically diverse tree collections, participating in conservation networks, developing tree-specific conservation models and guidelines, and strengthening tree science research efforts are a few examples. Most importantly, a more coordinated global effort is needed to fill knowledge gaps, share information, and build conservation capacity in biodiversity hotspots to prevent the loss of tree species.

Keywords Arboretum, botanical garden

NICOLE CAVENDER, MURPHY WESTWOOD, CATHERINE BECHTOLDT GERARD DONNELLY, SARA OLDFIELD, MARTIN GARDNER DAVID RAE and WILLIAM MCNAMARA

Introduction

lobally, 10% of all trees (> 8,000 species) are threa-Gtened with extinction (Oldfield et al., 1998). Although protecting a threatened species in its natural habitat (in situ conservation) is the ideal and most effective way to prevent extinction, there is a growing realization that complementary protection efforts outside a species' natural habitat (ex situ conservation) are also crucial for species' survival (Kramer et al., 2011; Oldfield & Newton, 2012; Pritchard et al., 2012). The success of in situ conservation is dependent on a variety of factors, including accurate assessment of threats, local community and government engagement, and the susceptibility of native habitat to climate change (Robinson, 2005; Oldfield & Newton, 2012; Pritchard et al., 2012). Ex situ conservation approaches can complement in situ conservation by strategically avoiding these confounding factors. In some cases a small population size or an imminent threat could render in situ conservation of a tree species unviable, making ex situ conservation the only option to prevent its immediate extinction (McNamara, 2011; Ma et al., 2013). Storage in a seed bank is the most economic and practical way to protect tree species, but many trees, such as oaks, cannot be stored using existing technologies. These 'exceptional' species must be housed in living collections (Pence, 2012) Furth

Cavender et al. 2015

(INTER)NATIONAL NEED

"... prioritizing genetically diverse tree collections"

"... developing tree-specific models and guidelines"

Strengthening the conservation value of ex situ tree collections

Abstract With 10% of trees (> 8,000 species) threatened with extinction there is an urgent need for botanical gardens to protect threatened trees in dedicated conservation collections. Species conservation is mentioned in the mission statements of most major botanical gardens, yet the actual conservation value of existing ex situ tree collections is low. We conducted interviews with members of the botanical garden community and organized a symposium at the 5th Global Botanic Gardens Congress to identify challenges and collect recommendations to improve living ex situ tree collections. We summarize and evaluate this information to facilitate gardens becoming more effective agents for global tree conservation. Experts agree that gardens offer valuable strengths and assets for tree conservation. Some challenges exist, however, including a lack of strategic conservation focus, collection management limitations, gaps in fundamental biological information for trees, and a lack of global coordination. Solutions are offered to facilitate gardens and arboreta of all sizes to participate more effectively in tree conservation. Prioritizing genetically diverse tree collections, participating in conservation networks, developing tree-specific conservation models and guidelines, and strengthening tree science research efforts are a few examples. Most importantly, a more coordinated global effort is needed to fill knowledge gaps, share information, and build conservation capacity in biodiversity hotspots to prevent the

Keywords Arboretum, botanical garden

NICOLE CAVENDER, MURPHY WESTWOOD, CATHERINE BECHTOLDT GERARD DONNELLY, SARA OLDFIELD, MARTIN GARDNER DAVID RAE and WILLIAM MCNAMARA

Introduction

lobally, 10% of all trees (> 8,000 species) are threa-Gtened with extinction (Oldfield et al., 1998). Although protecting a threatened species in its natural habitat (in situ conservation) is the ideal and most effective way to prevent extinction, there is a growing realization that complementary protection efforts outside a species' natural habitat (ex situ conservation) are also crucial for species' survival (Kramer et al., 2011; Oldfield & Newton, 2012; Pritchard et al., 2012). The success of in situ conservation is dependent on a variety of factors, including accurate assessment of threats, local community and government engagement, and the susceptibility of native habitat to climate change (Robinson, 2005; Oldfield & Newton, 2012; Pritchard et al., 2012). Ex situ conservation approaches can complement in situ conservation by strategically avoiding these confounding factors. In some cases a small population size or an imminent threat could render in situ conservation of a tree species unviable, making ex situ conservation the only option to prevent its immediate extinction (McNamara, 2011; Ma et al., 2013). Storage in a seed bank is the most economic and practical way to protect tree species, but many trees, such as oaks, cannot be stored using existing technologies. These 'exceptional' species must be housed in living collections (Pence, 2012) Furth

Cavender et al. 2015

i. improving garden conservation.

ii. What do we need?

iii. Where are we now?

i. improving garden conservation.

ii. What do we need?

Models and guidelines for gardens.

iii. Where are we now?

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

Current project, 2016-2019: Safeguarding our Plant Collections

National Leadership Grant

Current project, 2016-2019: Safeguarding our Plant Collections

National Leadership Grant

Hibiscus

Magnolia

 Pseudophoenix

What about extirpated species?

> National Tropical Botanical Garden

Brighamia insignis

Functionally extinct in the wild

Brighamia insignis

Brighamia insignis

Zoo Meta-Population Strategies

Zoo 1

Zoo 3

Zoo Meta-Population Strategies

- 1. Pedigree
- 2. Genetics

Zoo 2

Zoo

Zoo Meta-Population Strategies

- 1. Pedigree
- 2. Genetics

Adaptable for plants?

PMx User Manual

Version 1.0

for PMx v. 1.0.20120115

Coordinated Breeding

First project meeting, October 2016, Morton Arboretum

Inspiring Const

Jordan Wood

Fieldwork for *Quercus oglethorpensis,* 2016.

Sean Hoban

Fieldwork for *Quercus boyntonii,* 2017.

Seana Walsh

Fieldwork for *Hibiscus waimeae,* 2017.

sette could be

Patrick Griffith Fieldwork for Pseudophoenix sargentii, 2017

Patrick Griffith Xavier Gratacos Teodoro Clase Pedro Toribio

Fieldwork for Pseudophoenix ekmanii, 2017 Vanessa Sanchez

Extensive labwork (2016-2018)

PMx User Manual Version 1.0 for PMx v. 1.0.20120115

> Chicago Zoological Society Inspiring Conservation Leadership

> BROOKFIELD

National Leadership

The Morton Arboretum 8

USDA

Chicago Zoological Society Inpiring Courses in Lealnship

Ø

MBC

The ARNOLD ARBORETUM of HARVARD UNIVERSITY

0

Center for Plant Conservation

(Inter) National Leadership

0

Any results yet?

(Inter) National Leadership

Data show similarities and differences!

sample accession sample accession qualifier	sample accession year	sample date entry for PMx	sample genus	sample species	sample received as	maternal accession	paternal accession	source type	source site	source state	source country	wild state	wild details	wild collector	wild collection date	putitive population	putitive population code	putitive subpopulation
060024 030	2006	20060101	Brighamia	insignis	seed	020036	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
090445 002	2009	20090101	Brighamia	insignis	seed	060024	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
090445 003	2009	20090101	Brighamia	insignis	seed	060024	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
090445 004	2009	20090101	Brighamia	insignis	seed	060024	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100231 002	2010	20100101	Brighamia	insignis	seed	050389	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100231 014	2010	20100101	Brighamia	insignis	seed	050389	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100274 002	2010	20100101	Brighamia	insignis	seed	990836	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100274 006	2010	20100101	Brighamia	insignis	seed	990836	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100274 007	2010	20100101	Brighamia	insignis	seed	990836	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100274 010	2010	20100101	Brighamia	insignis	seed	990836	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100274 011	2010	20100101	Brighamia	insignis	seed	990836	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 001	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 002	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 003	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 007	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 008	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 009	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 012	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawai'i	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 016	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 021	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 024	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 036	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 044	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 054	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali
100651 059	2010	20100101	Brighamia	insignis	seed	050682	unknown	cultivated, known wild origi	National Tropical Botanical Garden	Hawaiʻi	United States	n/a	n/a	n/a	n/a	Kauai	KAU	NaPali

Brighamia – 1400 records imported into PMx

Brighamia – pedigree of NTBG plants

Parent 1

Parent 2

A PMx :: BrighamiaKinships :: Genetics

Overview Founders Individuals Kinship Matrix Pairwise Info Pairing Culling Management Sets Graphs Settings Selection

Males		Spec	ify Pairs	Read Pair File	Repro Goals		Females		Results							
UniqueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^	UniqueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^		Resulti	ing
110	0.2461	54	0.4100	1.0000	19	US	110	0.2461	54	0.4100	1.0000	19	U			
500	???	263	???	1.0000	19	U:	500	???	263	???	1.0000	19	U		Gene [Dive
51 U	0.7836	262	0.5656	0.0000		U	51 U	0.7836	262	0.5656	0.0000		U		Gene \	Valu
81	0.2915	61	0.5002	1.0000	19	U	81	0.2915	61	0.5002	1.0000	19	U		FGE	
82	0.2915	61	0.5002	1.0000	19	U	82	0.2915	61	0.5002	1.0000	19	US		Analyt	ic K
83	0.2915	61	0.5002	1.0000	19	U	83	0.2915	61	0.5002	1.0000	19	U	Success	e 🗌	1
86	0.2915	61	0.5002	1.0000	19	U	86	0.2915	61	0.5002	1.0000	19	US	Selecter	d Pairs	
87	0.2915	61	0.5002	1.0000	19	U	87	0.2915	61	0.5002	1.0000	19	U	Sire	Dam	Su
88	0.2915	61	0.5002	1.0000	19	U	88	0.2915	61	0.5002	1.0000	19	US	942	968	
89	0.2915	61	0.5002	1.0000	19	U	89	0.2915	61	0.5002	1.0000	19	U	935	938	
90	0.2915	61	0.5002	1.0000	19	U	90	0.2915	61	0.5002	1.0000	19	US	962	1173	
91	0.2915	61	0.5002	1.0000	19	U	91	0.2915	61	0.5002	1.0000	19	US	1173	935	
92	0.2915	61	0.5002	1.0000	19	U	92	0.2915	61	0.5002	1.0000	19	US	938	942	
93	0.2915	61	0.5002	1.0000	19	U	93	0.2915	61	0.5002	1.0000	19	U£	968	962	
94	0.3140	75	0.4932	1.0000	19	U	94	0.3140	75	0.4932	1.0000	19	US	500	269	
95	0.3365	84	0.4862	1.0000	19	U	95	0.3365	84	0.4862	1.0000	19	U	269	1178	
96	0.2915	61	0.5002	1.0000	19	U	96	0.2915	61	0.5002	1.0000	19	U£	1186	1185	
97	0.3140	75	0.4932	1.0000	19	U	97	0.3140	75	0.4932	1.0000	19	US	1178	500	
269	0.0056	7	0.0042	1.0000	19	U	269	0.0056	7	0.0042	1.0000	19	U			
270	0.0456	23	0.0273	1.0000	19	U	270	0.0456	23	0.0273	1.0000	19	U£			
935	0.0033	1	0.0034	1.0000	19	U	935	0.0033	1	0.0034	1.0000	19	U			
<	0.0000		0.0004	4 0000	10	×	<	0.0000		0.0004	1 0000	10	» ×			
Export				Filtered (showing 3	376) Fi	lter	Export				Filtered (showing (376) Fi	iter	# Pairs	= 10; # # Offst	Of prin
Assumptions	:							D	ynamic Populat	ion Variables						
Do Not Indu	de Founders; i	Parentage Ass	umptions = Pr	obParents; Unkno	wn Weight =	0.00;) Ch	ange G	D = 0.7008; G	V = 0.5443; N	1K = 0.2992; % Kr	own = 56.9	%; N = 3	86.0		

 \sim

đ \times

	Results	[Do not s	show Pa	aired		Sh Sh	ow F adju	sted				
	Result	ing Offsprir	ng F 0.	9000			_						
			Nev	v Value	C	hange							
	Gene [Diversity	0.	6949	-0	.0059							
	Gene \	/alue	0.	5437	-0	.0005							
	FGE		1.	6388	-0	.0323							
	Analyt	ic Known	0.	0.5698 0.0011									
Success		1	# Offsp	oring:	1								
Selecte	d Pairs			L			A	ccept	Auto				
Sire	Dam	Success	Offspring	F		dGD	MSI	Location	Notes				
942	968	1.0000		1 0.00	000	0.0015							
935	938	1.0000	1	1 0.00		0.0030							
962	1173	1.0000	1	1 0.000		0.0045							
1173	935	1.0000	1	1 0.00	000	0.0059							
938	942	1.0000	1	1 0.00	000	0.0073							
968	962	1.0000	1	1 0.00	000	0.0087							
500	269	1.0000	1	1 0.00	000	0.0093							
269	1178	1.0000	1	1 0.00	000	0.0099							
1186	1185	1.0000	1	1 0.00	000	0.0101							
1178	500	1.0000	1	1 0.0	130	0.0000							

ffspring attempted = 10 ng expected = 10.00

Remove Remove All

Export

Fixed Kinship Weight = 1.00

Assigns best pairings based on Mean Kinship

Results

Parent 1

Parent 2

Mx :: BrighamiaKinships :: Genetics

ueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^	UniqueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^
110	0.2461	54	0.4100	1.0000	19	U	110	0.2461	54	0.4100	1.0000	19	Us
500	???	263	???	1.0000	19	U	500	???	263	???	1.0000	19	U
51 U	0.7836	262	0.5656	0.0000		U	51 U	0.7836	262	0.5656	0.0000		U
81	0.2915	61	0.5002	1.0000	19	U	81	0.2915	61	0.5002	1.0000	19	U
82	0.2915	61	0.5002	1.0000	19	U	82	0.2915	61	0.5002	1.0000	19	U
83	0.2915	61	0.5002	1.0000	19	U	83	0.2915	61	0.5002	1.0000	19	U
86	0.2915	61	0.5002	1.0000	19	U	86	0.2915	61	0.5002	1.0000	19	U
87	0.2915	61	0.5002	1.0000	19	U	87	0.2915	61	0.5002	1.0000	19	U
88	0.2915	61	0.5002	1.0000	19	U	88	0.2915	61	0.5002	1.0000	19	U
89	0.2915	61	0.5002	1.0000	19	U	89	0.2915	61	0.5002	1.0000	19	U£
90	0.2915	61	0.5002	1.0000	19	U	90	0.2915	61	0.5002	1.0000	19	U£
91	0.2915	61	0.5002	1.0000	19	U:	91	0.2915	61	0.5002	1.0000	19	U
92	0.2915	61	0.5002	1.0000	19	U	92	0.2915	61	0.5002	1.0000	19	U
93	0.2915	61	0.5002	1.0000	19	U	93	0.2915	61	0.5002	1.0000	19	US
94	0.3140	75	0.4932	1.0000	19	U	94	0.3140	75	0.4932	1.0000	19	U
95	0.3365	84	0.4862	1.0000	19	U	95	0.3365	84	0.4862	1.0000	19	US
96	0.2915	61	0.5002	1.0000	19	U	96	0.2915	61	0.5002	1.0000	19	US
97	0.3140	75	0.4932	1.0000	19	U	97	0.3140	75	0.4932	1.0000	19	U
269	0.0056	7	0.0042	1.0000	19	U	269	0.0056	7	0.0042	1.0000	19	U
270	0.0456	23	0.0273	1.0000	19	U	270	0.0456	23	0.0273	1.0000	19	U
935	0.0033	1	0.0034	1.0000	19	U:	935	0.0033	1	0.0034	1.0000	19	U
	0.0000		0.0004	4 0000	**	>	<	0.0000		0.0004	4 0000	**	>

	Resulti	ing Of	prir	ng F	0.9	000									
					New	Value	Cł	nange							
	Gene [Diversi			0.6	949	-0	.0059							
	Gene \	/alue			0.5	437	-0.0005								
	FGE				1.6	388	-0.0323								
	Analyt	ic Knov			0.5698		0.0011								
cess ecter	: d Pairs	1		#	Offspri	ng:	1			Ac	cept		Auto		
e	Dam	Succe		Offs	pring	F		dGD	MS	I	Locatio	n I	Votes		
942	968	1.0	0		1	0.00	00	0.001	5						
935	938	1.	7		1	0.00	00	0.003	D						
962	1173	1.00	000		1	0.00	00	0.004	5						
173	935	1.00	000		1	0.00	00	0.005	9						
938	942	1.00	000		1	0.00	00	0.007	3						
968	962	1.00	000		1	0.00	00	0.008	7						
500	269	1.00	000		1	0.00	00	0.0093	3						
269	1178	1.00	000		1	0.00	00	0.0099	9						
186	1185	1.00	000		1	0.00	00	0.010	1						
178	500	1.00	000		1	0.01	30	0.000	D						

Do not show Paired

Change

s = 10; # Offspring attempted = 10 # Offspring expected = 10.00

Remove Remove All

Export

đ

Show F adjusted

 \times

Assumptions:

Do Not Include Founders; Parentage Assumptions = ProbParents; Unknown Weight = 0.00; Fixed Kinship Weight = 1.00

Dynamic Population Variables

GD = 0.7008; GV = 0.5443; MK = 0.2992; % Known = 56.9%; N = 386.0

Assigns best pairings based on Mean Kinship

đ

Show F adjusted

Accept

MSI Location

Remove

Remove All

 \times

Auto

Notes

Parent 1

Parent 2

Renetics PMx :: BrighamiaKinships :: Genetics

Overview Fo	ounders Indiv	/iduals Kinshi	p Matrix 🛛 Pai	rwise Info Pairing	Culling	Manage	ment Sets G	raphs Setting	s Selection											
Males		Speci	fy Pairs	Read Pair File	Repro G	oals	Females								Results		Do no	t show Pair	ed	
UniqueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^	UniqueID	MKdynamic	MKdynRank	KVdynamic	PedigreeKnown	AgeYears	Lc ^		Resulti	ng Ofi	ing F	0.9000		
110	0.2461	54	0.4100	1.0000	19	U	110	0.2461	54	0.4100	1.0000	19	U				Ne	aw Value	Change	
500	???	263	???	1.0000	19	U	500	???	263	???	1.0000	19	U		Gene D	iversi		0.6949	-0.0059	
51 U	0.7836	262	0.5656	0.0000		U	51 U	0.7836	262	0.5656	0.0000		UE		Gene V	alue		0.5437	-0.0005	
81	0.2915	61	0.5002	1.0000	19	U	81	0.2915	61	0.5002	1.0000	19	UE		FGE			1.6388	-0.0323	
82	0.2915	61	0.5002	1.0000	19	U	82	0.2915	61	0.5002	1.0000	19	U		Analyti	c Kno		0.5698	0.0011	
83	0.2915	61	0.5002	1.0000	19	U	83	0.2915	61	0.5002	1.0000	19	UE	Succes	s:	1	# Off	spring: 1	ī	1
86	0.2915	61	0.5002	1.0000	19	U	86	0.2915	61	0.5002	1.0000	19	US	Selecte	d Pairs					
87	0.2915	61	0.5002	1.0000	19	U	87	0.2915	61	0.5002	1.0000	19	US	Sire	Dam	Succes	Offsprin	a F	dGD	MS
88	0.2915	61	0.5002	1.0000	19	U	88	0.2915	61	0.5002	1.0000	19	US	942	968	1.0 0		1 0.000	0 0.001	5
89	0.2915	61	0.5002	1.0000	19	U	89	0.2915	61	0.5002	1.0000	19	U£	935	938	1.	/	1 0.000	0 0.003	J
90	0.2915	61	0.5002	1.0000	19	U	90	0.2915	61	0.5002	1.0000	19	U£	962	1173	1.0000		1 0.000	0 0.004	5
91	0.2915	61	0.5002	1.0000	19	U	91	0.2915	61	0.5002	1.0000	19	U£	1173	935	1.0000		1 0.000	0 0.005	e
92	0.2915	61	0.5002	1.0000	19	U	92	0.2915	61	0.5002	1.0000	19	U	938	942	1.0000		1 0.000	0 0.007	3
93	0.2915	61	0.5002	1.0000	19	U	93	0.2915	61	0.5002	1.0000	19	U£	968	962	1.0000		1 0.000	0.008	7
94	0.3140	75	0.4932	1.0000	19	U	94	0.3140	75	0.4932	1.0000	19	U	500	269	1.0000		1 0.000	0.009	3
95	0.3365	84	0.4862	1.0000	19	U	95	0.3365	84	0.4862	1.0000	19	U	269	1178	1.0000		1 0.000	0.009	6
96	0.2915	61	0.5002	1.0000	19	US	96	0.2915	61	0.5002	1.0000	19	U£	1186	1185	1.0000		1 0.000	0.010	1
97	0.3140	75	0.4932	1.0000	19	U	97	0.3140	75	0.4932	1.0000	19	US	1178	500	1.0000		1 0.013	0.000	J C
269	0.0056	7	0.0042	1.0000	19	U	269	0.0056	7	0.0042	1.0000	19	US							
270	0.0456	23	0.0273	1.0000	19	U	270	0.0456	23	0.0273	1.0000	19	U£							
935	0.0033	1	0.0034	1.0000	19	U	935	0.0033	1	0.0034	1.0000	19	UE							
<	0.0000		0.0004	4 0000	10	>	<	0.0000		0.0004	1 0000	**	>						_	_
Export			I	Filtered (showing 3	376) Fi	ilter	Export				Filtered (showing 3	376) F	ilter	# Pairs	= 10; # # Offsp	Offspring ring expe	attempte cted = 10	d = 10 .00	Ex	port
Assumptions:										tion Variables										
Do Not Inclu Fixed Kinship	ide Founders; F p Weight = 1.0	Parentage Assu 0	umptions = Pr	obParents; Unknov	wn Weight =	= 0.00;	ÇC	nange G	D = 0.7008; G	V = 0.5443; N	IK = 0.2992; % Kn	iown = 56.9	%; N = 3	386.0						

Sustains genetic diversity into next generation

Cacheito Palm: Pseudophoenix ekmanii

Cacheito Pseudophoenix ekmanii Burret Estado de conservación: EN A1abcd; B1ab(i,ii,iii,iv,v)+2ab(i,ii,iii,iv,v) Estatus biogeográfico: Endémica Tipo biológico: Estípite

6

Can ex situ collections help?

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

iv. A path forward.

- i. improving garden conservation.
- ii. What do we need?

iii. Where are we now?

Coordinating diversity.

- i. improving garden conservation.
- ii. What do we need?
- iii. Where are we now?
- iv. A path forward.

Refine the protocols

Refine the protocols

Reach our community

The foundation of public gardens is built on the amazing diversity of the world's plants, yet today more than 20% of plant species are in danger of extinction.

Building living plant collections

A guide for public gardens

to support conservation:

extinction isn't an alloction in the wild in Belize

The rare Sinkhole Cycad, Zamia decu

Did you know that oaks and many palms and cycads are 'exceptional species'?

Some 10-25% of globally threatened plant species are 'exceptional', and rely solely a living plant collections, **Reach our community**

Refine the protocols

Find patterns and principles

Refine the protocols

Reach our community

Coordinate Diversity!

MB

IMLS MG-30-16-0085-16, MA-30-14-0123-14, & MA-05-12-0336-12 National Science Foundation DEB 1050340, DBI-1461007 Mohamed bin Zayed Species Conservation Fund Association of Zoological Horticulture International Palm Society SOS-Save Our Species Eppley Foundation Dr. Lin Lougheed

Thank you